Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Clin Rev Allergy Immunol ; 2022 Jan 15.
Article in English | MEDLINE | ID: covidwho-2252392

ABSTRACT

The immune system is the central regulator of tissue homeostasis, ensuring tissue regeneration and protection against both pathogens and the neoformation of cancer cells. Its proper functioning requires homeostatic properties, which are maintained by an adequate balance of myeloid and lymphoid responses. Aging progressively undermines this ability and compromises the correct activation of immune responses, as well as the resolution of the inflammatory response. A subclinical syndrome of "homeostatic frailty" appears as a distinctive trait of the elderly, which predisposes to immune debilitation and chronic low-grade inflammation (inflammaging), causing the uncontrolled development of chronic and degenerative diseases. The innate immune compartment, in particular, undergoes to a sequela of age-dependent functional alterations, encompassing steps of myeloid progenitor differentiation and altered responses to endogenous and exogenous threats. Here, we will review the age-dependent evolution of myeloid populations, as well as their impact on frailty and diseases of the elderly.

2.
Clin Rev Allergy Immunol ; 2022 Jan 28.
Article in English | MEDLINE | ID: covidwho-2232239

ABSTRACT

The cardiovascular system is frequently affected by coronavirus disease-19 (COVID-19), particularly in hospitalized cases, and these manifestations are associated with a worse prognosis. Most commonly, heart involvement is represented by myocarditis, myocardial infarction, and pulmonary embolism, while arrhythmias, heart valve damage, and pericarditis are less frequent. While the clinical suspicion is necessary for a prompt disease recognition, imaging allows the early detection of cardiovascular complications in patients with COVID-19. The combination of cardiothoracic approaches has been proposed for advanced imaging techniques, i.e., CT scan and MRI, for a simultaneous evaluation of cardiovascular structures, pulmonary arteries, and lung parenchyma. Several mechanisms have been proposed to explain the cardiovascular injury, and among these, it is established that the host immune system is responsible for the aberrant response characterizing severe COVID-19 and inducing organ-specific injury. We illustrate novel evidence to support the hypothesis that molecular mimicry may be the immunological mechanism for myocarditis in COVID-19. The present article provides a comprehensive review of the available evidence of the immune mechanisms of the COVID-19 cardiovascular injury and the imaging tools to be used in the diagnostic workup. As some of these techniques cannot be implemented for general screening of all cases, we critically discuss the need to maximize the sustainability and the specificity of the proposed tests while illustrating the findings of some paradigmatic cases.

3.
Front Immunol ; 13: 937667, 2022.
Article in English | MEDLINE | ID: covidwho-1933702

ABSTRACT

Introduction: The SARS-CoV-2 infection has been advocated as an environmental trigger for autoimmune diseases, and a paradigmatic example comes from similarities between COVID-19 and the myositis-spectrum disease associated with antibodies against the melanoma differentiation antigen 5 (MDA5) in terms of clinical features, lung involvement, and immune mechanisms, particularly type I interferons (IFN). Case Report: We report a case of anti-MDA5 syndrome with skin manifestations, constitutional symptoms, and cardiomyopathy following a proven SARS-CoV-2 infection. Systematic Literature Review: We systematically searched for publications on inflammatory myositis associated with COVID-19. We describe the main clinical, immunological, and demographic features, focusing our attention on the anti-MDA5 syndrome. Discussion: MDA5 is a pattern recognition receptor essential in the immune response against viruses and this may contribute to explain the production of anti-MDA5 antibodies in some SARS-CoV-2 infected patients. The activation of MDA5 induces the synthesis of type I IFN with an antiviral role, inversely correlated with COVID-19 severity. Conversely, elevated type I IFN levels correlate with disease activity in anti-MDA5 syndrome. While recognizing this ia broad area of uncertainty, we speculate that the strong type I IFN response observed in patients with anti-MDA5 syndrome, might harbor protective effects against viral infections, including COVID-19.


Subject(s)
Autoimmune Diseases , COVID-19 , Interferon Type I , Melanoma , Myositis , Antigens, Differentiation , Autoimmunity , Biomarkers , Humans , Interferon-Induced Helicase, IFIH1 , SARS-CoV-2
4.
Vaccines (Basel) ; 10(5)2022 May 18.
Article in English | MEDLINE | ID: covidwho-1917836

ABSTRACT

The purpose of this study was to evaluate the efficacy and safety of the Moderna-1273 mRNA vaccine for SARS-CoV-2 in patients with immune-mediated diseases under different treatments. Anti-trimeric spike protein antibodies were tested in 287 patients with rheumatic or autoimmune diseases (10% receiving mycophenolate mofetil, 15% low-dose glucocorticoids, 21% methotrexate, and 58% biologic/targeted synthetic drugs) at baseline and in 219 (76%) 4 weeks after the second Moderna-1273 mRNA vaccine dose. Family members or caretakers were enrolled as the controls. The neutralizing serum activity against SARS-CoV-2-G614, alpha, and beta variants in vitro and the cytotoxic T cell response to SARS-CoV-2 peptides were determined in a subgroup of patients and controls. Anti-SARS-CoV-2 antibody development, i.e., seroconversion, was observed in 69% of the mycophenolate-treated patients compared to 100% of both the patients taking other treatments and the controls (p < 0.0001). A dose-dependent impairment of the humoral response was observed in the mycophenolate-treated patients. A daily dose of >1 g at vaccination was a significant risk factor for non-seroconversion (ROC AUC 0.89, 95% CI 0.80-98, p < 0.0001). Moreover, in the seroconverted patients, a daily dose of >1 g of mycophenolate was associated with significantly lower anti-SARS-CoV-2 antibody titers, showing slightly reduced neutralizing serum activity but a comparable cytotoxic response compared to other immunosuppressants. In non-seroconverted patients treated with mycophenolate at a daily dose of >1 g, the cytotoxic activity elicited by viral peptides was also impaired. Mycophenolate treatment affects the Moderna-1273 mRNA vaccine immunogenicity in a dose-dependent manner, independent of rheumatological disease.

5.
Life Sci Alliance ; 5(6)2022 06.
Article in English | MEDLINE | ID: covidwho-1689580

ABSTRACT

SARS-CoV-2 vaccination has proven effective in inducing an immune response in healthy individuals and is progressively us allowing to overcome the pandemic. Recent evidence has shown that response to vaccination in some vulnerable patients may be diminished, and it has been proposed a booster dose. We tested the kinetic of development of serum antibodies to the SARS-CoV-2 Spike protein, their neutralizing capacity, the CD4 and CD8 IFN-γ T-cell response in 328 subjects, including 131 immunocompromised individuals (cancer, rheumatologic, and hemodialysis patients), 160 health-care workers (HCW) and 37 subjects older than 75 yr, after vaccination with two or three doses of mRNA vaccines. We stratified the patients according to the type of treatment. We found that immunocompromised patients, depending on the type of treatment, poorly respond to SARS-CoV-2 mRNA vaccines. However, an additional booster dose of vaccine induced a good immune response in almost all of the patients except those receiving anti-CD20 antibody. Similarly to HCW, previously infected and vaccinated immunocompromised individuals demonstrate a stronger SARS-CoV-2-specific immune response than those who are vaccinated without prior infection.


Subject(s)
COVID-19 Vaccines/immunology , Immunocompromised Host/immunology , T-Lymphocytes/immunology , 2019-nCoV Vaccine mRNA-1273/immunology , Aged , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , BNT162 Vaccine/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Humans , Immunization, Secondary , Middle Aged , Neoplasms/immunology , Renal Dialysis
8.
Curr Opin Rheumatol ; 33(6): 514-521, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1402704

ABSTRACT

PURPOSE OF REVIEW: The aim of the present review is to analyze the link between autoimmune diseases and environmental factors, in particular severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (COVID-19) as it shares numerous features with the interstitial lung disease associated with connective tissue diseases positive for rare autoantibodies directed at highly specific autoantigens (i.e., MDA5 and RIG1) among the intracellular sensors of SARS-CoV-2 in the innate response against viruses. RECENT FINDINGS: As shown in recent publications and in our original data, specific autoantibodies may be functionally relevant to COVID-19 infection. We evaluated sera from 35 hospitalized patients with COVID-19 to identify antinuclear antibodies and autoantibodies directed against specific antigenic targets, and we identified anti-nuclear antibodies (ANA) in 20/35 of patients with COVID-19 (57%), in patients with need for supplemental oxygen (90% vs. 20% in ANA-negative cases; P < 0.0001). In 7/35 COVID-19 sera, we detected anti-MJ/NXP2 (n = 3), anti-RIG1 (n = 2), anti-Scl-70/TOPO1 (n = 1), and anti-MDA5 (n = 1), overall associated with a significantly worse pulmonary involvement at lung computerized tomography scans. Eleven (31%) patients were positive for antibodies against the E2/E3 subunits of mitochondrial pyruvate dehydrogenase complex. SUMMARY: Viral infections such as COVID-19 are associated with ANA and autoantibodies directed toward antiviral signaling antigens in particular in patients with worse pulmonary involvement.


Subject(s)
COVID-19 , Connective Tissue Diseases , Dermatomyositis , Antibodies, Antinuclear , Autoantibodies , Dermatomyositis/complications , Humans , SARS-CoV-2
11.
J Autoimmun ; 117: 102592, 2021 02.
Article in English | MEDLINE | ID: covidwho-974183

ABSTRACT

The diverse clinical manifestations of COVID-19 is emerging as a hallmark of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) infection. While the initial target of SARS-CoV-2 is the respiratory tract, it is becoming increasingly clear that there is a complex interaction between the virus and the immune system ranging from mild to controlling responses to exuberant and dysfunctional multi-tissue directed autoimmune responses. The immune system plays a dual role in COVID-19, being implicated in both the anti-viral response and in the acute progression of the disease, with a dysregulated response represented by the marked cytokine release syndrome, macrophage activation, and systemic hyperinflammation. It has been speculated that these immunological changes may induce the loss of tolerance and/or trigger chronic inflammation. In particular, molecular mimicry, bystander activation and epitope spreading are well-established proposed mechanisms to explain this correlation with the likely contribution of HLA alleles. We performed a systematic literature review to evaluate the COVID-19-related autoimmune/rheumatic disorders reported between January and September 2020. In particular, we investigated the cases of incident hematological autoimmune manifestations, connective tissue diseases, antiphospholipid syndrome/antibodies, vasculitis, Kawasaki-like syndromes, acute arthritis, autoimmune-like skin lesions, and neurologic autoimmune conditions such as Guillain-Barré syndrome. We screened 6263 articles and report herein the findings of 382 select reports which allow us to conclude that there are 2 faces of the immune response against SARS-CoV-2, that include a benign virus controlling immune response and a many faceted range of dysregulated multi-tissue and organ directed autoimmune responses that provides a major challenge in the management of this viral disease. The number of cases for each disease varied significantly while there were no reported cases of adult onset Still disease, systemic sclerosis, or inflammatory myositis.


Subject(s)
Autoimmune Diseases/epidemiology , COVID-19/epidemiology , Janus Kinases/metabolism , SARS-CoV-2/physiology , Animals , Chronic Disease , Humans , Immunity , Incidence , Inflammation
12.
J Autoimmun ; 109: 102442, 2020 05.
Article in English | MEDLINE | ID: covidwho-27261

ABSTRACT

The Coronavirus-associated disease, that was first identified in 2019 in China (CoViD-19), is a pandemic caused by a bat-derived beta-coronavirus, named SARS-CoV2. It shares homology with SARS and MERS-CoV, responsible for past outbreaks in China and in Middle East. SARS-CoV2 spread from China where the first infections were described in December 2019 and is responsible for the respiratory symptoms that can lead to acute respiratory distress syndrome. A cytokine storm has been shown in patients who develop fatal complications, as observed in past coronavirus infections. The management includes ventilatory support and broad-spectrum antiviral drugs, empirically utilized, as a targeted therapy and vaccines have not been developed. Based upon our limited knowledge on the pathogenesis of CoViD-19, a potential role of some anti-rheumatic drugs may be hypothesized, acting as direct antivirals or targeting host immune response. Antimalarial drugs, commonly used in rheumatology, may alter the lysosomal proteases that mediates the viral entry into the cell and have demonstrated efficacy in improving the infection. Anti-IL-1 and anti-IL-6 may interfere with the cytokine storm in severe cases and use of tocilizumab has shown good outcomes in a small cohort. Baricitinib has both antiviral and anti-inflammatory properties. Checkpoints inhibitors such as anti-CD200 and anti-PD1 could have a role in the treatment of CoViD-19. Rheumatic disease patients taking immunosuppressive drugs should be recommended to maintain the chronic therapy, prevent infection by avoiding social contacts and pausing immunosuppressants in case of infection. National and international registries are being created to collect data on rheumatic patients with CoViD-19.


Subject(s)
Biological Therapy , Coronavirus Infections/complications , Coronavirus Infections/drug therapy , Pneumonia, Viral/complications , Pneumonia, Viral/drug therapy , Rheumatic Diseases/complications , Rheumatic Diseases/therapy , Antibodies, Monoclonal, Humanized/therapeutic use , Antimalarials/therapeutic use , Antirheumatic Agents/therapeutic use , Azetidines/therapeutic use , Betacoronavirus/drug effects , COVID-19 , Coronavirus Infections/prevention & control , Cytokines/immunology , Humans , Immunosuppressive Agents/therapeutic use , Interleukin-1/antagonists & inhibitors , Interleukin-6/antagonists & inhibitors , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Purines , Pyrazoles , SARS-CoV-2 , Sulfonamides/therapeutic use , Virus Internalization/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL